高一數學教案。
每個老師不可缺少的課件是教案課件,老師還沒有寫的話現在也來的及。?學生反應的準確性可以體現教學的專業度,你是否在尋找合適的教案課件呢?《高一數學教案》是由欄目小編特意為您提供的內容,更多信息請繼續關注我們的網站!
高一數學教案(篇1)
教學準備
教學目標
熟悉與數列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。
教學重難點
熟悉與數列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。
教學過程
【復習要求】熟悉與數列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。
【方法規律】應用數列知識界實際應用問題的關鍵是通過對實際問題的綜合分析,確定其數學模型是等差數列,還是等比數列,并確定其首項,公差或公比等基本元素,然后設計合理的計算方案,即數學建模是解答數列應用題的關鍵。
一、基礎訓練
1、某種細菌在培養過程中,每20分鐘*一次一個*為兩個,經過3小時,這種細菌由1個可繁殖成
A、511B、512C、1023D、1024
2、若一工廠的生產總值的月平均增長率為p,則年平均增長率為
A、B、
C、D、
二、典型例題
例1:某人每期期初到銀行存入一定金額A,每期利率為p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,問到第n期期末的本金和是多少?
評析:此例來自一種常見的存款叫做零存整取。存款的方式為每月的某日存入一定的金額,這是零存,一定時期到期,可以提出全部本金及利息,這是整取。計算本利和就是本例所用的有窮等差數列求和的方法。用實際問題列出就是:本利和=每期存入的金額[存期+1/2存期存期+1利率]
例2:某人從1999到20xx年間,每年6月1日都到銀行存入m元的一年定期儲蓄,若每年利率q保持不變,且每年到期的存款本息均自動轉為新的一年定期,到20xx年6月1日,此人到銀行不再存款,而是將所有存款的本息全部取回,則取回的`金額是多少元?
例3、某地區位于沙漠邊緣,人與自然進行長期頑強的斗爭,到1999年底全地區的綠化率已達到30%,從20xx年開始,每年將出現以下的變化:原有沙漠面積的16%將栽上樹,改造為綠洲,同時,原有綠洲面積的4%又被侵蝕,變為沙漠。問經過多少年的努力才能使全縣的綠洲面積超過60%。lg2=0.3
例4、流行性感冒簡稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發生流感,據資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數最多?并求這一天的新患者人數。
高一數學教案(篇2)
(2)能根據幾何結構特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
(4)會表示有關于幾何體以及柱、錐、臺的分類。
2.過程與方法:
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
3.情感態度與價值觀:
(1)使學生感受空間幾何體存在于現實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養學生的空間想象能力和抽象括能力。
二、教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
2在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?
3、展示具有柱、錐、臺、球結構特征的空間物體。
1、棱柱的結構特征:
(1)觀察棱柱的幾何物體以及投影出棱柱的圖片,
(2)棱柱的主要結構特征(棱柱的概念):
①有兩個面互相平行;②其余各面都是平行四邊形;③每相鄰兩上四邊形的公共邊互相平行。
(3)棱柱的表示法及分類:
2、棱錐、棱臺的結構特征:
(1)實物模型演示,投影圖片;
(2)以類似的方法,根據出棱錐、棱臺的結構特征,并得出相關的概念、分類以及表示。
棱錐:有一個面是多邊形,其余各面都是有一個公共頂點的三角形。
棱臺:且一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。
3、圓柱的結構特征:
(1)實物模型演示,投影圖片——如何得到圓柱?
(2)根據圓柱的概念、相關概念及圓柱的表示。
4、圓錐、圓臺、球的結構特征:
——如何得到圓錐、圓臺、球?
(2)以類似的方法,根據圓錐、圓臺、球的結構特征,以及相關概念和表示。
5、柱體、錐體、臺體的概念及關系:
探究:棱柱、棱錐、棱臺都是多面體,它們在結構上有哪些相同點和不同點?三者的關系如何?當底面發生變化時,它們能否互相轉化?
圓柱、圓錐、圓臺呢?
6、簡單組合體的結構特征:
(2)實物模型演示,投影圖片——說出組成這些物體的幾何結構特征。
(3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?
練習:課本P7 ??練習1、2; ?課本P8 ?習題1.1 ?第1、2、3、4、5題
1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
1、中心投影與平行投影:
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側視圖和俯視圖統稱為幾何體的三視圖。
3、畫長方體的三視圖:
正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。
課本P15 ??練習1、2; ?P20習題1.2 [A組] 2。
課本P20習題1.2 ?[A組] 1。
高一數學教案(篇3)
教學目標:
1、理解集合的概念和性質。
2、了解元素與集合的表示方法。
3、熟記有關數集。
4、培養學生認識事物的能力。
教學重點:
集合概念、性質
教學難點:
集合概念的理解
教學過程:
1、定義:
集合:一般地,某些指定的對象集在一起就成為一個集合(集)。元素:集合中每個對象叫做這個集合的元素。
由此上述例中集合的元素是什么?
例(1)的元素為1、3、5、7,
例(2)的元素為到兩定點距離等于兩定點間距離的點,
例(3)的元素為滿足不等式3x—2> x+3的實數x,
例(4)的元素為所有直角三角形,
例(5)為高一·六班全體男同學。
一般用大括號表示集合,{?}如{我校的籃球隊員},{太平洋、大西洋、印度洋、北冰洋}。則上幾例可表示為??
為方便,常用大寫的拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(1)確定性;(2)互異性;(3)無序性。
3、元素與集合的'關系:隸屬關系
元素與集合的關系有“屬于∈”及“不屬于?(?也可表示為)兩種。如A={2,4,8,16},則4∈A,8∈A,32?A。
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集A記作a?A,相反,a不屬于集A記作a?A(或)
注:1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q??
元素通常用小寫的拉丁字母表示,如a、b、c、p、q??
2、“∈”的開口方向,不能把a∈A顛倒過來寫。
4
注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0。
(2)非負整數集內排除0的集。記作N__或N+ 。Q、Z、R等其它數集內排除0
的集,也是這樣表示,例如,整數集內排除0的集,表示成Z__
請回答:已知a+b+c=m,A={x|ax2+bx+c=m},判斷1與A的關系。
高一數學學習方法歸納
【一、及時回憶】
如果等到把課堂內容遺忘得差不多時才復習,就幾乎等于重新學習,所以課堂學習的新知識必須及時復習。
可以一個人單獨回憶,也可以幾個人在一起互相啟發,補充回憶。一般按照教師板書的提綱和要領進行,也可以按教材綱目結構進行,從課題到重點內容,再到例題的每部分的細節,循序漸進地進行復習。在復習過程中要不失時機整理筆記,因為整理筆記也是一種有效的復習方法。
【二、重復鞏固】
即使是復習過的內容仍須定期鞏固,但是復習的次數應隨時間的增長而逐步減小,間隔也可以逐漸拉長??梢援斕祆柟绦轮R,每周進行周小結,每月進行階段性總結,期中、期末進行全面系統的學期復習。從內容上看,每課知識即時回顧,每單元進行知識梳理,每章節進行知識歸納總結,必須把相關知識串聯在一起,形成知識網絡,達到對知識和方法的整體把握。
【三、合理安排】
復習一般可以分為集中復習和分散復習。實驗證明,分散復習的效果優于集中復習,特殊情況除外。分散復習,可以把需要識記的材料適當分類,并且與其他的學習或娛樂或休息交替進行,不至于單調使用某種思維方式,形成疲勞。分散復習也應結合各自認知水平,以及識記素材的特點,把握重復次數與間隔時間,并非間隔時間越長越好,而要適合自己的復習規律。
【四、突破重點難點】
對所學的素材要進行分析、歸類,找出重、難點,分清主次。在復習過程中,特別要關注難點及容易造成誤解的問題,應分析其關鍵點和易錯點,找出原因,必要時還可以把這類問題進行梳理,記錄在一個專題本上,也可以在電腦上做一個重難點“超市”,可隨時點擊,進行復習。
【五、效果檢測】
隨著時間的推移,復習的效果會產生變化,有的淡化、有的模糊、有的不準確,到底各環節的內容掌握得如何,需進行效果檢測,如:周周練、月月測、單元過關練習、期中考試、期末考試等,都是為了檢測學習效果。檢測時必須獨立,完成,保證檢測出的效果的真實性,如果存在問題,應該找到錯誤的根源,并適時采取補救措施進行校正。目前市場上練習冊多如牛毛,請在老師的指導下選用。
高中數學考試的技巧
總體原則
1、先做簡單題,后做難題。
2、遇到較難的大題,把所有跟該題有關的知識點都寫出來,要知道數學講究步驟分。
3、若是證明題,萬一不會,可以先寫出已知條件,再寫出要證明的最后一步,再一步一步往上推,中間步驟隨便寫點。(使用于粗心的教師,但我們不提倡,重點是要平時學好)。
一、整體把握、抓大放小
拿到試卷后可以先快速瀏覽一下所有題目,根據積累的考試經驗,大致估計一下每部分應該分配的時間。對于能夠很快做出來的題目,一定要拿到應得的分數。
二、確定每部分的答題時間
1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應該盡量減少時間,或者放棄,等以后學習進階了再嘗試著做。
2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復訓練”等提高反應速度,這樣,你下次考試時能用較少的時間做出來。
三、碰到難題時
1、你可以先用“直覺”最快的找到解題思路;
2、如果“直覺”不管用,你可以聯想以前做過的類似的題目,從而找到解題思路;
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節
做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應得的每一分。
高一數學教案(篇4)
教學目標
1.理解分數指數冪的含義,了解實數指數冪的意義。
2.掌握有理數指數冪的運算性質,靈活的運用乘法公式進行有理數指數冪的運算和化簡,會進行根式與分數指數冪的相互轉化。
教學重點
1.分數指數冪含義的理解。
2.有理數指數冪的運算性質的理解。
3.有理數指數冪的運算和化簡。
教學難點
1.分數指數冪含義的理解。
2.有理數指數冪的運算和化簡。
教學過程
一.問題情景
上節課研究了根式的意義及根式的性質,那么根式與指數冪有什么關系?整數指數冪有那些運算性質?
二.學生活動
1.說出下列各式的意義,并指出其結果的指數,被開方數的指數及根指數三者之間的關系
(1)=(2)=
2.從上述問題中,你能得到的結論為
3.(a0)及(a0)能否化成指數冪的形式?
三.數學理論
正分數指數冪的意義:=(a0,m,n均為正整數)
負分數指數冪的意義:=(a0,m,n均為正整數)
1.規定:0的正分數指數冪仍是0,即=0
0的負分數指數冪無意義。
3.規定了分數指數冪的意義后,指數的概念從整數指數推廣到了有理數指數,因而整數指數冪的運算性質同樣適用于有理數指數冪。
即=(1)
=(2)其中s,tQ,a0,b0
=(3)
四.數學運用
例1求值:
(1)(2)(3)(4)
例2用分數指數冪的形式表示下列各式(a0)
(1)(2)
例3化簡
(1)
(2)(3)
例4化簡
例5已知求(1)(2)
五.回顧小結
1.分數指數冪的意義。=(0,m,n)
無意義
2.有理數指數冪的運算性質
3.整式運算律及乘法公式在分數指數冪運算中仍適用
4.指數概念從整數指數冪推廣到有理數指數冪,同樣可以推廣到實數指數冪,請同學們閱讀P47的閱讀部分
練習P47-48練習1,2,3,4
六.課外作業
P48習題2.2(1)2,4
高一數學教案(篇5)
教學 目標
1、使學生理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項、
(1)理解數列是按一定順序排成的一列數,其每一項是由其項數唯一確定的、
(2)了解數列的各種表示方法,理解通項公式是數列第 項 與項數 的關系式,能根據通項公式寫出數列的前幾項,并能根據給出的一個數列的前幾項寫出該數列的一個通項公式、
(3)已知一個數列的遞推公式及前若干項,便確定了數列,能用代入法寫出數列的前幾項、
2、通過對一列數的觀察、歸納,寫出符合條件的一個通項公式,培養學生的觀察能力和抽象概括能力、
3、通過由 求 的過程,培養學生嚴謹的科學態度及良好的思維習慣、
教學 建議
(1)為激發學生學習數列的興趣,體會數列知識在實際生活中的作用,可由實際問題引入,從中抽象出數列要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還有物品堆放個數的計算等、
(2)數列中蘊含的函數思想是研究數列的指導思想,應及早引導學生發現數列與函數的關系、在 教學 中強調數列的項是按一定順序排列的,“次序”便是函數的自變量,相同的數組成的數列,次序不同則就是不同的數列、函數表示法有列表法、圖象法、解析式法,類似地,數列就有列舉法、圖示法、通項公式法、由于數列的自變量為正整數,于是就有可能相鄰的兩項(或幾項)有關系,從而數列就有其特殊的表示法??遞推公式法、
(3)由數列的通項公式寫出數列的前幾項是簡單的代入法, 教師 應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助、
(4)由數列的前幾項寫出數列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規律性的結論,如正負相間用 來調整等、如果學生一時不能寫出通項公式,可讓學生依據前幾項的規律,猜想該數列的下一項或下幾項的值,以便尋求項與項數的關系、
(5)對每個數列都有求和問題,所以在本節課應補充數列前 項和的概念,用 表示 的問題是重點問題,可先提出一個具體問題讓學生分析 與 的關系,再由特殊到一般,研究其一般規律,并給出嚴格的推理證明(強調 的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況、
(6)給出一些簡單數列的通項公式,可以求其最大項或最小項,又是函數思想與方法的體現,對程度好的學生應提出這一問題,學生運用函數知識是可以解決的、
教學 設計示例
數列的概念
教學 目標
1、通過 教學 使學生理解數列的概念,了解數列的表示法,能夠根據通項公式寫出數列的項、
2、通過數列定義的歸納概括,初步培養學生的觀察、抽象概括能力;滲透函數思想、
3、通過有關數列實際應用的介紹,激發學生學習研究數列的積極性、
教學 重點,難點
教學 重點是數列的定義的歸納與認識; 教學 難點是數列與函數的聯系與區別、
教學 用具: 電腦,課件(媒體資料),投影儀,幻燈片
教學 方法: 講授法為主
教學 過程
一、揭示課題
今天開始我們研究一個新課題、
先舉一個生活中的例子:場地上堆放了一些圓鋼,最底下的一層有100根,在其上一層(稱作第二層)碼放了99根,第三層碼放了98根,依此類推,問:最多可放多少層?第57層有多少根?從第1層到第57層一共有多少根?我們不能滿足于一層層的去數,而是要但求如何去研究,找出一般規律、實際上我們要研究的是這樣的一列數
( 板書 ) 象這樣排好隊的數就是我們的研究對象??數列、
( 板書 )第三章 數列
(一)數列的概念
二、講解新課
要研究數列先要知道何為數列,即先要給數列下定義,為幫助同學概括出數列的定義,再給出幾列數:
(幻燈片)
①
自然數排成一列數:
②
3個1排成一列:
③
無數個1排成一列:
④
的不足近似值,分別近似到 排列起來:
⑤
正整數 的倒數排成一列數:
⑥
函數 當 依次取 時得到一列數:
⑦
函數 當 依次取 時得到一列數:
⑧
請學生觀察8列數,說明每列數就是一個數列,數列中的每個數都有自己的特定的位置,這樣數列就是按一定順序排成的一列數、
( 板書 )1、數列的定義:按一定次序排成的一列數叫做數列、
為表述方便給出幾個名稱:項,項數,首項(以幻燈片的形式給出)、以上述八個數列為例,讓學生練習了指出某一個數列的首項是多少,第二項是多少,指出某一個數列的一些項的項數、
由此可以看出,給定一個數列,應能夠指明第一項是多少,第二項是多少,……,每一項都是確定的,即指明項數,對應的項就確定、所以數列中的每一項與其項數有著對應關系,這與我們學過的函數有密切關系、
( 板書 )2、數列與函數的`關系
數列可以看作特殊的函數,項數是其自變量,項是項數所對應的函數值,數列的定義域是正整數集 ,或是正整數集 的有限子集 、
于是我們研究數列就可借用函數的研究方法,用函數的觀點看待數列、
遇到數學概念不單要下定義,還要給其數學表示,以便研究與交流,下面探討數列的表示法、
( 板書 )3、數列的表示法
數列可看作特殊的函數,其表示也應與函數的表示法有聯系,首先請學生回憶函數的表示法:列表法,圖象法,解析式法、相對于列表法表示一個函數,數列有這樣的表示法:用 表示第一項,用 表示第一項,……,用 表示第 項,依次寫出成為
( 板書 )(1)列舉法
(如幻燈片上的例子)簡記為
一個函數的直觀形式是其圖象,我們也可用圖形表示一個數列,把它稱作圖示法、
( 板書 )(2)圖示法
啟發學生仿照函數圖象的畫法畫數列的圖形、具體方法是以項數 為橫坐標,相應的項 為縱坐標,即以 為坐標在平面直角坐標系中做出點(以前面提到的數列 為例,做出一個數列的圖象),所得的數列的圖形是一群孤立的點,因為橫坐標為正整數,所以這些點都在 軸的右側,而點的個數取決于數列的項數、從圖象中可以直觀地看到數列的項隨項數由小到大變化而變化的趨勢、
有些函數可以用解析式來表示,解析式反映了一個函數的函數值與自變量之間的數量關系,類似地有一些數列的項能用其項數的函數式表示出來,即 ,這個函數式叫做數列的通項公式、
( 板書 )(3)通項公式法
如數列 的通項公式為 ;
的通項公式為 ;
的通項公式為 ;
數列的通項公式具有雙重身份,它表示了數列的第 項,又是這個數列中所有各項的一般表示、通項公式反映了一個數列項與項數的函數關系,給了數列的通項公式,這個數列便確定了,代入項數就可求出數列的每一項、
例如,數列 的通項公式 ,則 、
值得注意的是,正如一個函數未必能用解析式表示一樣,不是所有的數列都有通項公式,即便有通項公式,通項公式也未必唯一、
除了以上三種表示法,某些數列相鄰的兩項(或幾項)有關系,這個關系用一個公式來表示,叫做遞推公式、
( 板書 )(4)遞推公式法
如前面所舉的鋼管的例子,第 層鋼管數 與第 層鋼管數 的關系是 ,再給定 ,便可依次求出各項、再如數列 中, ,這個數列就是 、
像這樣,如果已知數列的第1項(或前幾項),且任一項與它的前一項(或前幾項)間的關系用一個公式來表示,這個公式叫做這個數列的遞推公式、遞推公式是數列所特有的表示法,它包含兩個部分,一是遞推關系,一是初始條件,二者缺一不可、
可由學生舉例,以檢驗學生是否理解、
三、小結
1、數列的概念
2、數列的四種表示
四、作業? 略
五、 板書 設計
數列
(一)數列的概念 涉及的數列及表示
1、數列的定義
2、數列與函數的關系
3、數列的表示法
(1)列舉法
(2)圖示法
(3)通項公式法
(4)遞推公式法
探究活動
將邊長為 厘米的正方形分成 個邊長為1厘米的正方形,數出其中所有正方形的個數、
解:當 時,共有正方形 個;當 時,共有正方形 個;當 時,共有正方形 個;當 時,共有正方形 個;當 時,共有正方形 個;歸納猜想邊長為 厘米的正方形中的正方形共有 個、
高一數學教案(篇6)
案例背景:
對數函數是函數中又一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的.故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解.對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎.
(師):前面的幾種函數都是以形式定義的方式給出的,今天我們將從反函數的角度介紹新的函數.
反函數的實質是研究兩個函數的關系,所以自然我們應從大家熟悉的函數出發,再研究其反函數.這個熟悉的函數就是指數函數.
所求反函數為.
(師):那么我們今天就是研究指數函數的反函數-----對數函數.
(師):由于定義就是從反函數角度給出的,所以下面我們的研究就從這個角度出發.如從定義中你能了解對數函數的什么性質嗎?最初步的認識是什么?
(教師提示學生從反函數的三定與三反去認識,學生自主探究,合作交流)
(學生)對數函數的定義域為,對數函數的值域為,且底數就是指數函數中的,故有著相同的限制條件.
(提問)用什么方法來畫函數圖像?
(學生1)利用互為反函數的兩個函數圖像之間的關系,利用圖像變換法畫圖.
(學生2)用列表描點法也是可以的。
請學生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.
(師)由于指數函數的圖像按和分成兩種不同的類型,故對數函數的圖像也應以1為分界線分成兩種情況和,并分別以和為例畫圖.
具體操作時,要求學生做到:
(1)指數函數和的圖像要盡量準確(關鍵點的位置,圖像的變化趨勢等).
(2)畫出直線.
(3)的圖像在翻折時先將特殊點對稱點找到,變化趨勢由靠近軸對稱為逐漸靠近軸,而的圖像在翻折時可提示學生分兩段翻折,在左側的先翻,然后再翻在右側的部分.
學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出
和的圖像.(此時同底的指數函數和對數函數畫在同一坐標系內)如圖:
教師畫完圖后再利用電腦將和的圖像畫在同一坐標系內,如圖:
然后提出讓學生根據圖像說出對數函數的性質(要求從幾何與代數兩個角度說明)
由以上兩條可說明圖像位于軸的右側.
(4)奇偶性:既不是奇函數也不是偶函數,即它不關于原點對稱,也不關于軸對稱.
當時,在上是減函數,即圖像是下降的.
之后可以追問學生有沒有值和最小值,當得到否定答案時,可以再問能否看待何時函數值為正?學生看著圖可以答出應有兩種情況:
當時,有;當時,有.
學生回答后教師可指導學生巧記這個結論的方法:當底數與真數在1的同側時函數值為正,當底數與真數在1的兩側時,函數值為負,并把它當作第(6)條性質板書記下來.
最后教師在總結時,強調記住性質的關鍵在于要腦中有圖.且應將其性質與指數函數的性質對比記憶.(特別強調它們單調性的一致性)
對圖像和性質有了一定的了解后,一起來看看它們的應用.
先由學生依次列出相應的不等式,其中特別要注意對數中真數和底數的條件限制.
(1)與;(2)與;
(3)與;(4)與.
讓學生先說出各組數的特征即它們的底數相同,故可以構造對數函數利用單調性來比大小.最后讓學生以其中一組為例寫出詳細的比較過程.
案例反思:
本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質.難點是利用指數函數的圖象和性質得到對數函數的圖象和性質.由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,因而在教學上采取教師逐步引導,學生自主合作的方式,從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
在教學中一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地以反函數這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.
幼兒園教案《高一數學教案匯總》一文希望您能收藏!“幼兒教師教育網”是專門為給您提供幼兒園教案而創建的網站。同時,yjs21.com還為您精選準備了高一數學教案專題,希望您能喜歡!